If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-23x+59=0
a = 2; b = -23; c = +59;
Δ = b2-4ac
Δ = -232-4·2·59
Δ = 57
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-\sqrt{57}}{2*2}=\frac{23-\sqrt{57}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+\sqrt{57}}{2*2}=\frac{23+\sqrt{57}}{4} $
| 3p-2(p-2)=10 | | 9x+3x-14=7+3x+6 | | (2×x)×2=128 | | 3o-9=-27 | | 6y-5y=4 | | x/x+3=2/3 | | x/8+17=-5 | | 9x+13=10x+7 | | 1-0.6x=0 | | a=412a-9 | | x-(8×/15)=35 | | 3x-3+1=2+x+8 | | 7y-36=64+3y, | | -12x-2(-6x+2)=-4 | | 18w-2w=4w | | -7z-7.5z=19.5 | | 2z+-1=z | | -32=-6s=4 | | 43=r/6 | | 2t=7(4-t) | | X2+5x-29=0 | | (4/0.25)*0.75=(x/0.75)*0.75 | | 20=-m+6m | | (t−13)∙8=56 | | -5=5-3p-7p | | -3=2q | | -24=-6m-6m | | 7.4x-9.3=12.3 | | -x=-3-63.5 | | ∣x−1∣=5 | | 3=-3+a-4a | | 1-(-3t)=10 |